DATE ARTIST2 Embedded Systems Design

🐙 🖈 🌷 htt

http://www.artist-embedded.org/FP6/

ARTIST Workshop at DATE'06 W4: "Design Issues in Distributed, Communication-Centric Systems"

Optimisation of Robust Communication-Centric Systems

Rolf Ernst, Arne Hamann TU Braunschweig

Overview

- motivation
- robustness in communication centric design
- robustness metrics and optimization
- ✤ experiments
- ✤ conclusion

Motivation

- design properties are subject to modifications
 - during the design process

refinement of early design data estimations refinement and changes of specification exchange of platform components – replace processor or memory type

 \succ in the product lifecycle

product updates (HW, firmware and SW)

integration of new components or subsystems

change in the environment

- applications (smartphone), technical system (motor speed)

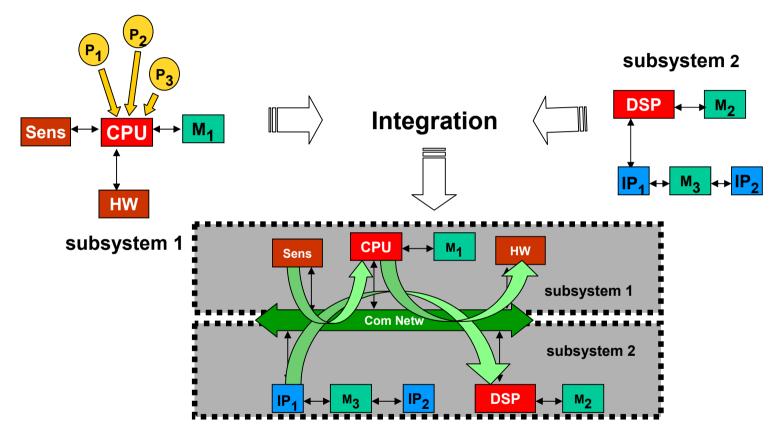
 \succ in the field

dynamic systems

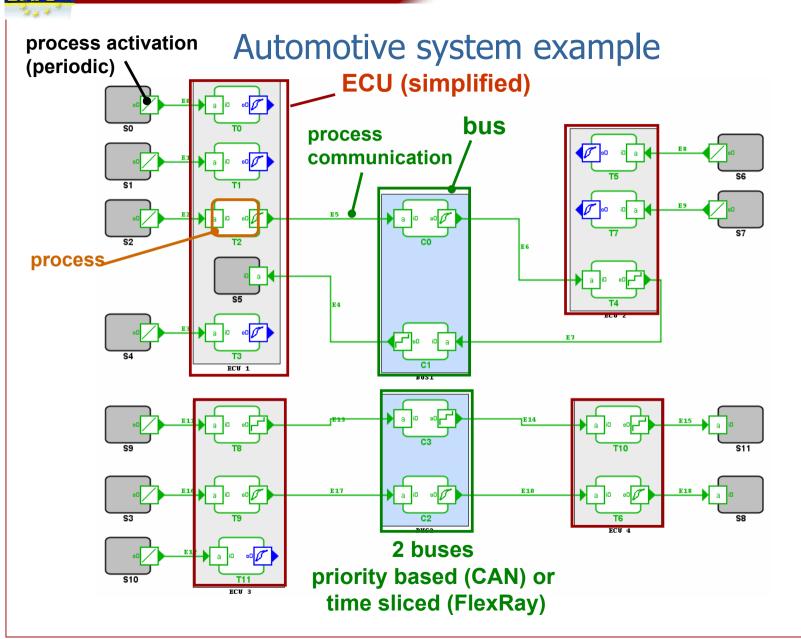
unplanned environment situations (resilience)

such changes introduce uncertainties and increase design risk

find approaches to analyze and reduce risk


Embedded system robustness

- defining robustness first approach
 - intuitive: a system is robust that provides required functionality and meets contraints under design property modifications
 - robustness to HW failures not considered in the sequel
- many different approaches to improving robustness
 - system learning and adaptation (control application)
 - statistical process optimization (e.g. Taguchi Method)
 - design centering (analog design)
- what approach is suitable to embedded systems?
 - what are the constraints that we want to consider?
 - what design property modifications should be included?
 - > what **models** are appropriate?


Design properties considered

- in principle, all design data can be subject to design robustness consideration - complex issue
- here we assume
 - fixed architecture
 - fixed mapping of functions to components
- modification of performance related SW and HW component properties
 - platform component performance (processor and communication links)
 - execution times of individual processes
 - process communication volumes
- considered constraints
 - focus on real-time systems
 - consider worst case behavior (rather than e.g. average)
 - max. response times
 - end-to-end deadlines

Communication centric design as integration problem

- complex dependencies as a integration result
- major robustness issue

Automotive example - explanations

- electronic control unit functions are jointly specified by OEM and supplier
- buses (or bus networks with gateways) are used for systems integration
 - design parameter: bus priorities, time slice, cycle time
- design scenario 1:
 - parameters are defined and fixed early at design time
 - not modified later to reach compatibility for variants and later updates
 - ➤ state of the practice
- design scenario 2:
 - update parameters during product life cycle (e.g. new version of an existing car type) or in the field

Robustness metrics

- robustness metrics shall be based on the "slack" of a system property
- def. 1: Slack
 - given
 - a constrained system S
 - a parameter configuration c
 - a system property $p \in S$
 - ➤ we define

$$slack_{p;c} = \frac{\left| v_c^+(p) - v(p) \right|}{v(p)} *100$$

were v(p) is the current value of p and $v_c^+(p)$ is the maximum property value for p not leading to constraint violations

Robustness metrics – static design robustness

def. 2: Static Design Robustness (SDR)

- ➤ given
 - a constrained system S

a parameter configuration c

- a set of system properties $P = \{p_1, ..., p_n\}$
- a set of (user defined) weights $W = \{w_1, ..., w_n\}$
- we define SDR as the weighted set of slacks

$$SDR_{P;c} = \frac{\sum_{i=1}^{n} w_{i} * slack_{p;c}}{\sum_{i=1}^{n} w_{i}}$$

- SDR is relevant to design scenario 1 and measures the overall slack in case one of the considered properties is modified later
- > alternative: geometric mean value

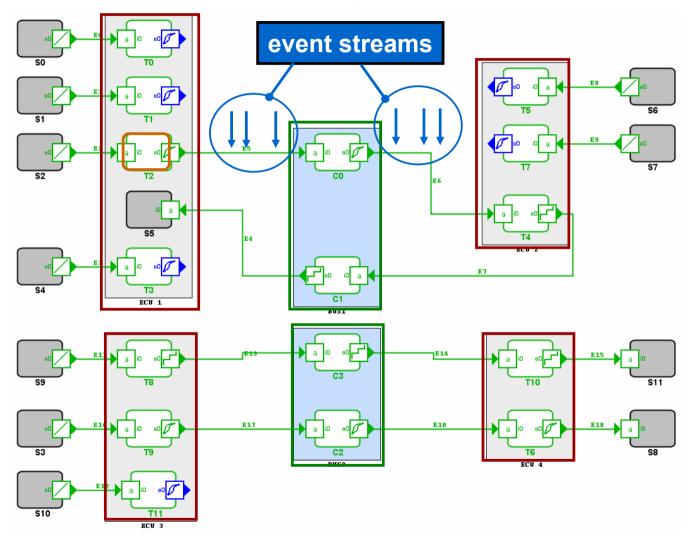
Robustness metrics – static and dynamic

- SDR is relevant to design scenario 1 and measures the overall slack in case one of the considered properties is modified later
- to anticipate and include *potential* parameter adaptations in later design phases or in the field, we *need a metric that includes potential designer or system counteractions in case a system property is modified later*
- ✤ for that purpose, we must
 - identify such potential counteractions
 - ➢ include their effect in the metric
- potential counteractions can e.g. be found by system optimization assuming modified system properties

Robustness metrics – dynamic design robustness

- def. 2: Dynamic Design Robustness (DDR)
 - ➤ given
 - a constrained system S
 - a system property p
 - a set of potential parameter configurations $C = \{c_1, ..., C_m\}$ The slack vector $V = \{slack_{p:c1}, ..., slack_{p:cn}\}$
 - we define DDR as the slack of the configuration that allows the maximum p modification

 $DDR_{p;C} = \max_{c \in C} (slack_{p;c})$

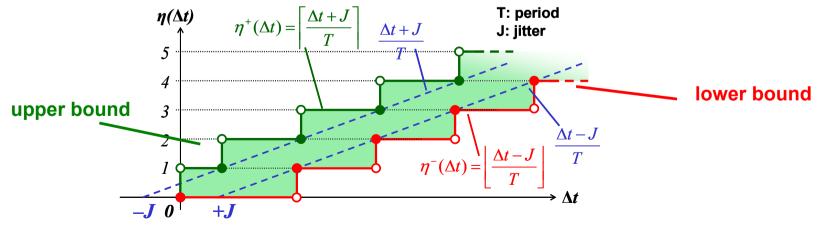

DDR is not unique but depends on the set of available configurations ("counteractions") in C

DDR is maximal if C contains c with maximum possible slack_{p:c}

Models for robustness metrics

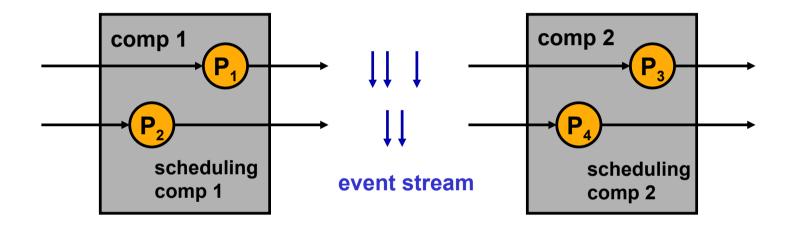
- simulation
 - not possible because property changes are not supported in general (if code available at all)
- simple models capturing average loads of processors or communication links
 - often used in architecture design
 - > do not consider scheduling influences not appropriate
- event and response time models of schedulability analysis
 - ➤ suitable

Automotive example event streams

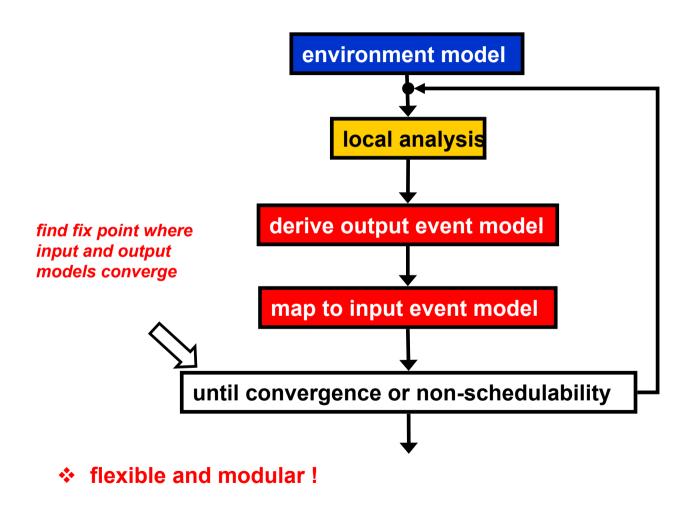


Event models

- event stream model w. parameters
 - individual events replaced by stream variables with parameters period, jitter, min. distance, …

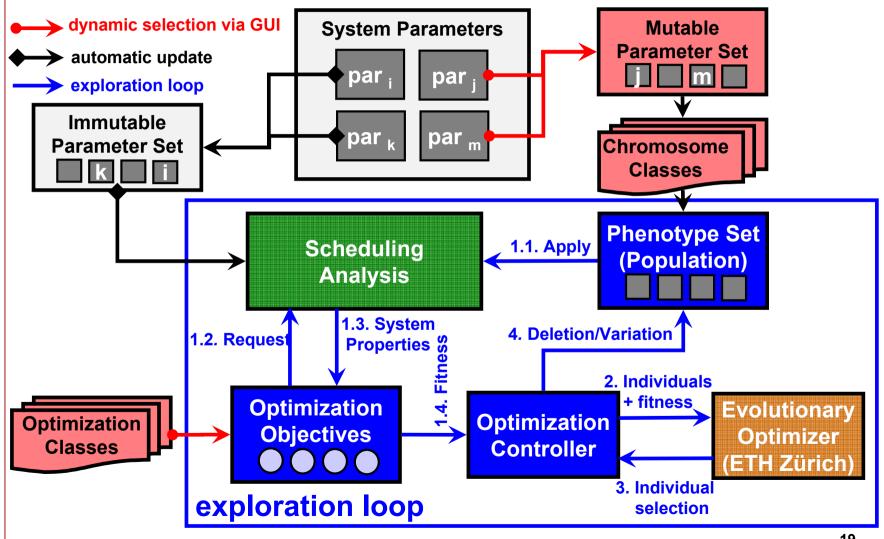

$$t_{e1}$$
 t_p t_{e2} t_p t_{e3}

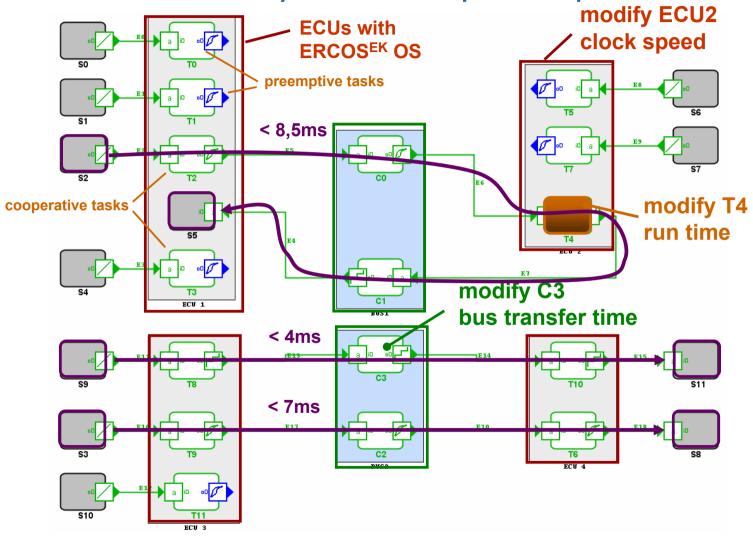
Network Calculus


System analysis using compositional approach

independently scheduled subsystems are coupled by data flow

- \Rightarrow subsystems coupled by stream of data
 - \Rightarrow interpreted as activating events
- \Rightarrow coupling corresponds to event propagation

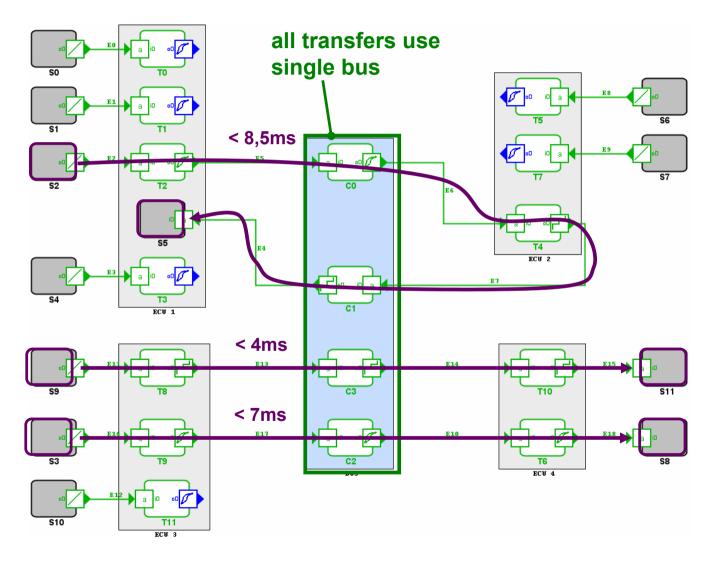

Compositional analysis principle


Application to robustness analysis and optimization

- ✤ sensitivity analysis
 - binary search to determine slack and SDR
- automated design space exploration
 - uses evolutionary optimizer
 - to maximize SDR
 - to generate a "good" configuration set C for DDR determination pareto optimization approximates maximum DDR

Design space exploration framework

Automotive system example - experiments



Exp. 1: Design robustness for bus w. priorities

	WCET T4 (slack)	WCET C3 (slack)	Speed ECU2 (slack)	SDR Metric
Original Configuration (Pareto-optimal with respect to timing)	28.75%	3000%	12%	1013.58
Optimized for SDR (all w _i = 1)	62.5%	5900%	28%	1996.83
DDR	86.25%	5900%	35%	n.a.

- significantly higher robustness when parameters are optimized for maximum SDR rather then just for minimum response time
- bus and ECU load identical in each column

Example system with single bus

Design robustness – single bus time triggered

	WCET T4 (slack)	WCET C3 (slack)	Speed ECU2 (slack)	SDR Metric (wi = 1)
Original Configuration (Pareto-optimal with respect to timing)	27,5%	750%	12%	200,875
Optimized for SDR – bus w. priorities (wi = 1)	50%	4900%	18%	1247,25
Optimized for SDR bus time triggered	30%	1400%	12%	593
DDR – bus w. priorities	81,25%	4900%	29%	N.A.

higher robustness of SDR optimized system remains under higher load, dynamic configuration efficiency is increasing

Conclusion

- formal methods for communication centric embedded system optimization
- introduced metrics to quantify and optimize embedded system robustness
- distinguish two design scenarios with different flexibility to change system parameters in later design phases
- first experiments at an automotive example show that optimization for robustness can be effective

Further reading

- www.symta.org
- ✤ www.symtavision.com
- www.mpa.ethz.ch